Saniyedir bu sayfadasınız... |
{ Matematik & Geometri Arşivi }
Unlu Matematikciler
AHMET FERGANi |
9. yüzyılın başlarında dünyaya geldiği kabul edilen ünlü matematik ve astronomi bilgini Ahmet Ferganî, çağının bilim ve kültür merkezlerinden olan Türkistan'ın Fergana bölgesindendir. Bilim ve kültür tarihimizin birinci elden kaynakları olan tezkireler (biyografik eserler)de doğum tarihi ile ilgili bir bilgi bulunmamakla birlikte kendisi gibi bir astronom olan babasının adının Muhammed, dedesinin ise Kesir olduğu kayıtlıdır. |
Ali KUŞCU |
|
Uluğ Bey'in Horasan ve Maveraünnehir hükümdarlığı sırasında, Semerkant'ta ilk ve dini öğrenimini tamamlamıştır. Küçük yaşta iken astronomi ve matematiğe geniş ilgi duymuştur. Devrinin en büyük bilginlerinden; Uluğ Bey , Bursalı Kadızade Rumi, Gıyaseddün Cemşid ve Mu'in al-Din el-Kaşi'den astronomi ve matematik dersi almıştır. Önce,Uluğ Bey, tarafından 1421 yılında kurulan Semerkant Rasathanesi ilk müdürü, Gıyaseddün Cemşid'in, kısa süre sonra da Rasathanenin ikinci müdürü Kadızade Rumi'nin ölümü üzerine, Uluğ Bey Rasathaneye müdür olarak Ali Kuşcu'yu görevlendirmiştir. Uluğ Bey Ziyc'inin tamamlanmasında büyük emeği geçmiştir. Nasirüddün Tusi'nin Tecrid-ül Kelam adlı eserine yazdığı şerh, bu konuda da gayret ve başarısının en güzel delilini teşkil etmektedir. Ebu Said Han'a ithaf edilen bu şerh, Ali Kuşcu'nun ilk şöhretinin duyulmasına neden olmuştur. Kaynakların değerlendirilmesi sonucu anlaşılmaktadır ki; Ali Kuşcu yalnız telih eseriyle değil, talim ve irşadıyle devrini aşan bir bilgin olarak tanınmaktadır. Öyle ki; telif eserlerinin dışında, torunu Mirim Çelebi, Hoca Sinan Paşa ve Molla Lütfi (Sarı Lütfi) gibi astronomların da yetişmesine sebep olmuştur. Bu bilginlerle beraber, Ali Kuşcu'yu eski astronominin en büyük bilginlerinden birisi olarak belirtebiliriz. ESERLERİ: Ali Kuşcu'nun özellikle, matematik ve astronomi ile ilgili eserleri, gerçek ilmi kişiliğini ortaya koymaktadır. Bu eserlerinin adları şunlardır; Risale-i fi'l Hey'e (Astronomi Risalesi) Risale-i fi'l Fehiye (Fetih Risalesi) Risale-i Hisap (Aritmetik Risalesi) Risale-i Muhammediye (Cebir ve Hesap konularından bahseder) Tecrid'ül Kelam (Sözün Tecridi) Risale-i Adudiye Unkud-üz zvehir fi Man-ül Cevahir (Mücevherlerin Dizilmesinde Görülen Salkım) Vaaz İstiarad |
ALAN TURING |
|
AUGUSTIN LOUIS CAUCHY |
|
Fransız matematikçi ( 1789 - 1857) 1821'de yayımlanan Cours d'analyse adlı kitabında çözümlemenin ana ilkelerini gözden ge-çirdi ve bunları yapıcı bir biçimde eleştirdi; böylece elementer fonksiyonların ve serilerin incelenmesine kesinlik kazandırdı. Cauchy herşeyden önce, karmaşık bir değişkenin fonksiyonları kuramının yaratıcısıdır. Bu konuda çıkış noktası karmaşık bölgelerde integrallemeydi (1814 - 1830): eğrisel integrali tanımladı, bunun temel özelliklerini kanıtladı ve kalanlar hesabını ortaya attı. İkinci grup çalışmasında (1830 - 1846) fonksiyonların serilere açılımını ve karmaşık diferansiyelleme ya da anali-ik-lik kavramlarını inceledi. Yaptığı cebir çalışmaları (yerine koyma hesabı , determinantlar ve matrisler kuramı, gruplar ve cebirsel genişlemeler kuramının oluşturulması) XIX. yy tarihsel hareketine, cebirsel yapıların bulunması ve incelenmesi biçiminde geçti. Cauchy mekanik alanında esneklik kuramının matematikle ilgili yönünü düzenledi. Gökbilim hesaplarını kolaylaştırdı ve hatalar kuramını geliştirdi. |
BERNHARD RIEMANN |
Fonksiyonlar kuramıyla yüzeyler kuramı arasındaki bağları inceleyerek topolojinin temellerini attı; Riemann'ın bu bilim dalının yaratıcısı olduğunu söyleyebiliriz. 1854'te bir fonksiyonun trigonometrik serilerle gösterilmesini konu alan doçentlik tezinde, türevlenmeyen sürekli bir fonksiyon örneği verdi.Aynı incelemesinde Cauchi' nin kuramından daha genel bir integralleme kuramı geliştirdi; bu kuram, süreksizlik bakımından sayısız bir sonsuzluğu olan sınırlı fonksiyonlara uygulanabiliyordu. Oysa Cauchy'nin kuramı, yalnızca parça parça sürekli fonksiyonlar için geçerliydi. Sayılar kuramında zeka fonksiyonunun, asal sayıların aritmetik kuramı için önemini gösterdi. Riemann eğriliği pozitif olan katlı uzaylar üzerinde, koşutsuz, öklidci olmayan bir geometri geliştirdi. |
BLAISE PASCAL |
Fransız matematikçi, fizikçi ve yazar (1623 - 1662) Pascala göre rastlantı geometriye dökülebilir. O'nun olasılıklar hesabına yaklaşımı, Pascal üçgeni denen aritmetik üçgene dayanır. Pascal daha sonra sikloit üzerine incelemelere baş-ladı ve "Traité des sinus du quart du cercle" ( Çeyrek çemberin sinüleri üzerine inceleme) adlı yapıtında Leibniz 'in de yararlanacağı karakteristik üçgeni buldu... 1653'ten itibaren matematik ve fizik üzerine çalışarak sıvıların kararsızlığı üzerine bir kitapçık yazar. Bu kitapçıkta Pascal'ın basınç kanunu açıklanır. Kendisi binom üçgeni üzerinde çalışan ilk matematikçi olmasa da bu konuda çalışması değişik gelişmelere ışık tutmuştur... |
Cahit ARF |
Daha sonra gittiği Amerika Birleşik Devletleri'nde araştırma ve incelemelerde bulundu; Kaliforniya Üniversitesi'nde konuk öğretim üyesi olarak görev yaptı. 1967 yılında yurda dönüşünde Orta Doğu Teknik Üniversitesi'nde öğretim üyeliğine getirildi. 1980 yılında emekli oldu. Emekliye ayrıldıktan sonra TÜBİTAK'a bağlı Gebze Araştırma Merkezi'nde görev aldı. 1985 ve 1989 yılları arasında Türk Matematik Derneği başkanlığını yaptı. Arf İnönü Armağanı'nı (1948) ve TÜBİTAK Bilim Ödülü'nü kazandı (1974). Cebir ve Sayılar Teorisi üzerine uluslararası bir sempozyum 1990'da 3 ve 7 Eylül tarihleri arasında Arf'in onuruna Silivri'de gerçekleştirilmiştir. Halkalar ve Geometri üzerine ilk konferanslarda 1984'te İstanbul'da yapılmıştır. Arf, matematikte geometri kavramı üzerine bir makale sunmuştur. Cahit Arf 1997 yılının Aralık ayında bir kalp rahatsızlığı nedeniyle aramızdan ayrıldı... |
Euclid |
|
EL-HARİZMİ |
Ebu Abdullah Muhammed bin Musa El-Harezmi, Özbekistan'da doğdu. Doğum tarihi kesin olarak bilinmemektedir. Hayatı hakında çok fazla bilgi bulunmamaktadır. Batı bilim dünya-sında en sürekli, en derin etkiler bırakmış matematikçi olarak tanınmıştır. El Harizmi'nin en çok ilgi gören eserleri Kitabü'l muhtasar fi'l Cebr ve'l Mukabele ve Kitabü'l muhtasar fi Hisabü'l Hindi dir. Harizmi, doğu bilim dünyasında cebir ilmine ilişkin ilk eser yazan kişidir. Bu bilim dalı daha önce az çok işlenmiş ve kısmen geometriden ayrı bir ilim dalı olmaya başlamıştı. Birinci dereceden denklemler çözülebiliyordu, hatta hesaplama metodlarıyla ikinci dereceden denklemlere çözüm bulunuyordu. Fakat henüz ikinci derece denklemlerin köklerini bulma yöntemi geliştirilmemişti. Harizmi'nin Denklem Grupları El Harizmi, adı geçen eserinde denklemleri iki grupta toplamaktadır: Birinci grupta, çözümleri derhal bulunabilen bizim bugünkü sembollerle ifade edersek x2 = ax x2 = n ax = n şeklindeki denklemlerdir. Bunların çözüm kurallarını gösterdikten sonra El- Harizmi ikinci denklem grubuna geçer x2 + ax = n x2 +n = ax ax + n = x2 Ve bunların çözümünü bugün bildiğimiz metotla yapar. Bu kitapta ayrıca, ikinci dereceden denklemlerin hangi durumlarda iki kökünün , hangi du-rumlarda çift kökünün olacağını ve hangi durumlarda denklemin reel kökü olamayacağını çok açık bir şekilde belirtmiştir. Bu kuralları bir öğretmen yeteneğiyle ortaya koyduktan sonra El Harizmi , bu kuralları geometrik olarak ispatlamıştır. Harizmi'nin bu eseri matematik tarihi bakımından çok önemli gelişmelere dayanak ve başlangıç olmuş 600 yıldan biraz daha fazla (15. y.y. sonuna kadar) matematik öğretimi için temel sayılmıştır. Eser, Endülüs medreseleri aracılığıyla Batı'ya geçmiştir. İlk Latince çevirisi 1183'te yapılmıştır. Roger Bacon, Fibonacci gibi bilim adamaları eseri hayranlıkla incelemişler, ve kendi öğretilerinde bu eserden faydalanmışlardır. 1486 yılında Leipzig Üniversitesi'nde okutulmaya başlanmıştır. 1598 -1599 yıllarında hala cebir biliminde tek kaynak Harizmi'nin bu eseridir. El Harizmi matematiğin yanı sıra astronomi ve coğrafya ilimlerinde de eserler vermiştir. Astronomik cetvellerle ilgili kitaplar yazmış ve bu eserler 12. y.y. da Latince' ye çevrilmiştir. Bunun yanısıra Ptolemy'nin coğrafya kitabını düzeltmelerle yeniden yazmış, 70 tane bilim adamıyla birlikte çalışarak 830 yılında bir dünya haritası çizmiştir. Dünyanın çevresini ve hacmini hesaplama çalışmalarında yer almıştır. Güneş saatleri, usturlaplar ve saatler üzerine yazılmış eserleri de vardır. |
ERATOSTHENES (M.Ö. 284 - 192) |
Yunanlı astronom, coğrafyacı, matematikçi ve filozof olan Eratosthenes, M.Ö. 284 yılında Kuzey Afrika'da doğdu. Eğitim ve öğretimini İskenderiye ve Atina'da tamamladı. Helenizm devrinde yetişen en büyük coğrafya bilginlerinden biridir. Bilim adamı olduğu kadar ozanlığı ile de tanınır. Matematik, astronomi ve felsefe ile uğraştı. M.Ö. 245 yılına doğru Mısır Kralı III. Ptolemaios tarafından İskenderiye şehrine çağrılmadan önce, uzun zaman Atina'da oturdu. İlk öğrenimi Atina'da geçti. III. Ptolemaios onu oğlunu eğitimi ve ünlü İskenderiye kitaplığının yönetimi ile görevlendirdi. Eratosthenes, felsefe, gramer, kronoloji ve coğrafya gibi çok çeşitli alanlarda çalıştı. Bu çalışmaları sonucunda çok öenmli sonuçlar gerçekleştirdi. İskenderiye kitaplığından oldukça yararlandı. Fakat, o daha çok matematikçi olarak iki buluşuyla tanınır. Banlardan ilki, asal sayıların bulunmasına yarayan ve kendi adını taşıyan ünlü Eratosthenes Kalburu'dur. İkincisi, orta orantılı problemin çözümü için tasarladığı bir hesap aletidir. Yerkürenin çevresini ilk olarak kesin bir biçimde hesaplayan Eratosthenes'tir. Bu amaçla, Assuan ve İskenderiye arasındaki meridyen yayının derece hesabıyla uzunluğunu buldu. Bundan yararlanarak, dünya çevresini kesin olarak hesapladı. Ünlü Archimedes'le uzun yıllar arkadaşlık yaptı. Onu, çalışmalarında destekledi. Archimedes'in tüm çalışmalarını mektuplarıyla izledi. |
FIBONACCI, Leonardo (1170 - 1230) |
|
Gaspart Monge |
Fransa'nın Cote-d'or eyaletinde bulunan Beaune kasabasında 10 Mayıs 1746 tarihinde dünyaya gelmiştir. Babası seyyar satıcı ve bileyici Jacques Monge'dir. Pek mütevazı bir ailenin çocuğu olan Monge, yardımsever hemşehrilerinin himayesinde büyüyüp özen gördü. Önceleri, doğduğu şehrin oratoryomunda okudu. 18 yaşında iken, 1764 yılında Mezieres askeri okuluna girdi. Rahip Bossout'un yanında matematik okutmanı oldu. (1766). 1768 yılında matematik kürsüsüne, 1771 yılında ise fizik kürsüsüne getirildi. 1780 de Louvre'de hidrodinamik dersleri vemek üzere Turgot tarafından Paris'e çağrıldı. Kısa bir süre sonra, Bilimler Akademisine, 1783 te de Donanmaya girdi. Fransız Devriminin ateşli bir taraftarı idi. 10 Ağustos'tan 1793 nisanına kadar Donanma Bakanlığı yaptı. Daha sonra Baruthane ve top dökümhanesini düzene soktu. Ecole Normale'nin kurulmasına büyük katkıda bulundu ve bu okulda tasarı geometri okuttu. Bir müddet sonra da, Ecole Polytechnique'i kurdu ve burada Yüzeyler Teorisi üzerine dersler verdi. İlerleyerek, devrinin matematik öğrenimine önemli katkılarda bulundu. Tasarı Geometrinin (Deskriftif) kurucusu olarak büyük matematikçiler arasında yer aldı. Analizin geometrik uygulamaları üzerinde araştırmalar da yaptı. Büyük ihtilal döneminde -hocalığı terk etmeyerek- Bakanlık görevine getirildi (1792). Yüksek Öğretmen Okulu profesörü (1794) olarak, tasarı geometri dersleri verdi. Napolyon Bonapart'la birlikte, Mısır seferine katılarak, Kahire de kurulan Enstitüyü başkan sıfatıyla idare etti. İtalya'da görevlendirildiği sırada, Nopolyon ile ilişki kurarak, Mısır seferine katılacak bilginleri topladı. Daha sonra Peluse Harabelerinde yapılan kazıları ve bilimsel araştırmaları yürüttü ve Mısır Enstitüsü başkanlığına tayin edildi. Fransa'ya dönünce, Ecole Poltechnique'deki derslerine yeniden başladı. İmparatorluk döneminde senatör oldu ve kendisine peluse Comte'i payesi verildi. Fakat krallık rejiminin yeniden kurulmasıyla bütün resmi ve akademik görevleriyle birlikte bu unvanı da kaldınldı, enstitü üyeliğine de son verildi. Bilhassa Politeknik Okulundaki kürsüsünün de elinden alınmasına son derece üzülerek, ruhi bunalım içine düştü ve bu sarsıntı sonucu, 1818 yılında Paris'te hayata gözlerini kapadı. İLMİ KİŞİLİĞİ Monge'ın çalışmaları; 19. yüzyılda, geometri ile ilgili yeni incelemelere yol açmıştır. Mühendis ve matematikçi olarak; özellikle, matematiğin pratik uygulamaları ile meşgul olmuştur. Matematik araştırmalarını hem geometri, hem de analitik açıdan yönlendirmiştir. Monge'nin matematikle ilgili çalışmalarını aşağıdaki gibi özetleyerek belirtmek mümkündür. |
CRAMER, Gabriel (1704 - 1752) |
|
BOOLE, George (1815 - 1864) |
Boole'un yaşadığı dönemde, bir dergide adamın olmadığı sürece bir çalışmanın yayınlatılması olanaksızdı. Boole, bu bakımdan şanslıydı. Çünkü, 1837 yılında, İskoçya'lı D. F. Gregory adında bir matematikçi, "Cambridge Mathematical Journal" adında bir dergi çıkarıyordu. Boole, derginin müdürüne çalışmalarının birkaçını verdi. Gregory bu çalışmaların orijinalliğini ve yazış biçimini çok beğendi. Yazıları yayınladı. Böylece, iki matematikçi arasında dostça bir arkadaşlık ve mektuplaşmalar hayatı boyunca sürdü. Modern cebir kavramı, Peacock, Herschel, De Morgan, Dabbage, Gregory ve Boole sayesinde yerini aldı. Boole, sembol ve işlemleri kullandı. Başlangıçta oldukça çok kopardı ama, sonunda yerine oturdu. Boole, de Morgan'ın hem hayranı ve hem de büyük bir dostuydu. İngiltere'deki büyük matematikçilerle ya kendisi doğrudan ya da mektupla haberleşiyordu. 1848 yılında "mantığın Matematik Analizi" adlı bir çalışması yayınlandı. Bu eser matematikte yeni bir çığır açmış ve Boole da kesin bir üne kavuşmuştu. Bu broşür, de Morgan'ın da taktirlerini topladı. Bu eser, bundan altı yıl sonra ortaya çıkacak olan bir çalışmanın müjdecisi olacaktı. 1849 yılında matematik profesörü olan Boole'un 1854 yılında, mantık ve olasılıklar üzerine büyük bir eseri yayınlandı. |
GELENBEVİ İSMAİL EFENDİ (1730 - 1790) |
|
GAUSS |
|
Kerim ERİM |
İstanbul Yüksek Mühendis mektebi'ni bitirdikten (1914) sonra Berlin Üniversitesi'nde Albert Einstein'in yanında doktorasını yaptı (1919). Türkiye'ye dönünce, bitirdiği okulda öğretim ü-yesi olarak çalışmaya başladı. Üniversite reformunu hazırlayan kurulda yer aldı. Yeni kurulan İstanbul Üniversitesi Fen Fakültesi'nde analiz profesörü ve dekan olduğu gibi Yüksek Mühendis Mektebi'nde de ders vermeye devam etti. Yüksek Mühendis Mektebi İstanbul Teknik Üniversitesi'ne dönüştürülünce buradan ayrıldı ve yalnızca İstanbul Üniversitesi'nde çalış-maya devam etti. Daha sonra burada ordinaryüs profesör oldu. 1948 yılında Fen Fakültesi Dekanlığı'na getirildi.
1940 - 1952 yılları arasında İstanbul Üniversitesi Fen Fakültesi'ne bağlı Matematik Enstitüsü-'nün başkanlığını yaptı. Türkiye'de yüksek matematik öğretiminin yaygınlaşmasında ve çağ-daş matematiğin yerleşmesinde etkin rol oynadı. Mekaniğin matematik esaslara dayandırıl-masına da öncülük etti. Matematik ve fizik bilimlerinin felsefe ile olan ilişkileri üzerinde de çalışmalarda bulunan Erim'in Almanca ve Türkçe yapıtları bulunmaktadır.Bunlardan bazıları şunlardır:
Nazari Hesap(1931), Mihanik(1934), Diferansiyel ve İntegral Hesap(1945), Über die Traghe-its-formen eines modulsystems(Bir modül sisteminin süredurum biçimleri üstüne - 1928)
|
Lazare Nicolas Marguérite Carnot |
|
Leonhard Euler |
İsviçre'nin Bale şehrinde, 15 Nisan 1707 tarihinde doğmuştur. Ertesi yıl, babası Paul Euler ve Annesi Merguerite Brucker ile birlikte, babasının kalvinist papazı olduğu Bale şehrinin yakınındaki Richen köyüne yerleşti. Genç yaşta Bale Üniversitesi'ne girerek teoloji ve İbranice öğrenimi de gördü. Büyük Petro'nun Rusya'ya getirdiği ressam Gsell'in kızı ile evlendi. Çocuklarını çok severdi. Sekizi küçük yaşlarında ölen on üç çocuğu oldu. 1735 yılında aşırı çalışma sonucu beynine kan hücüm ederek, sağ gözünü kaybetti. Gittikçe artan bir körlük sonucu, geri kalan ömrünü üzüntü içerisinde geçirdi. 1736 yılında, karısının ölümü, O'na büyük üzüntü kaynağı oldu. Ertesi yıl, ilk karısının üvey kardeşi Salomone A. Gsell ile evlendi. Başka bir büyük felaket de, sol gözünü iyi etmek ümidi ile yapılan ameliyatın muvaffakiyetsizlikle neticelenmesi oldu. Başlangıçta ameliyat başarılı geçti. Sonraları, yaranın iltihaplanması sonucu, şiddetli acılar çekti. 7 Eylül 1983 tarihinde, 77 yaşında iken, beyin kanaması sonucu hayata gözlerini kapadı. İLMİ ŞAHSİYETİ İlk matematik bilgilerini, babası Paul Euler'den aldı. İlahiyat öğrenimi görmek üzere, Basel Üniversitesine gönderildi. Burada Jean (I) Bernovilli 'nin derslerine devam etti. O'nun oğulları ile yakın arkadaş oldu. Onlar, Katerina I tarafından Saint-Betesburg'a çağrılınca, Euler de beraber gitti. 1732 yılında, İsviçre'ye dönen Daniel Bernouilli'nin kürsüsünde, O'nun yerini aldı. 1735 yılında, Mekanik Üstüne İnceleme (Traite Comple de Mecanique) adlı kitabı yayımlandı. Bu eserdeki konular, analizin, hareket bilimine uygulandığı ilk eserdir. 1741 yılında, Frederich II tarafından Berlin'e davet edildi ve 1744 yılında, Berlin Akademisi Matematik Bölümü Müdürü oldu. Kendilerine oranla, bazı belirsiz fonksiyonların, bütün öteki fonksiyonlardan daha büyük ve daha küçük olduğu eğrileri veya yüzeyleri belirlemeye yarayan, Eş Çevreler Teorisi (Theorie des Isoperimetres) adlı eserini bu sırada bitirdi. Euler, bu eserinde, konu ile ilgili çözümlerin metodunu geliştirdi ve bunu genel bir formülle gösterdi. Aynı yıl, Gezegenlerin ve Kuyrukluyıldızların Hareket Teorisi (Theroie du Mouvement des Planetes et des Cometes) adlı eserini yayımladı. Mıknatıslanma Torisi (Theroie de L' Aimantation) için, Paris Fen Akademisinin koyduğu ödülü kazandı. Bu yıllarda, Prusya Kralı'nın istediği, balistik problemleri çözdü. Kralın yeğeni, Anhalt-Dessau Prensesi, O'ndan fizik dersleri almak istedi. Yine bu sırada, Sonsuz Küçükler Analizine Giriş (İntroduction in Analysis İnfinitrom) (1748) ve Diferansiyel Hesabın Kuruluşları (İntotuones Calculi Differeniolis) (1755) adlı iki eseri yayımlandı. Bu kitaplar, uzun yıllar, konusu ile ilgili temel eserler sayıldı. 1776 yılında; Katerine II tarafından, Saint-Petersburg'a çağrıldığı sırada, öbür gözünü de kaybetti. Fakat bu sakatlık, O'nu çalışmalarından alıkoymadı ve İntegral Hesabın Kuruluşları (İnstitutiones Calculi İntegralis) (1768-1770) adlı eserinin çıkmasına engel olmadı. Paris Fen Akademisi, Euler'in birçok çalışmalarını mükafatlandırmıştı. Ay teorisini, yeniden geliştirmesi için, 1770 ve 1773 yıllarında bir yarışma açtı. Bu yarışmayı, Euler ve oğlu Johann Alberecht kazandı. Euler, matematikte yeni olan; Euler Açıları, Euler Çemberi, Euler Değişmezi, Euler Doğrusu, Euler Formülleri, Euler Fonksiyonu, Euler şekilleri gibi, pek çok yeni kavramlar kazandırdı. |
MOLLA LÜTFİ (? - 1495) |
İ15. yüzyılda, Fatih Sultan Mehmet ve II. Beyazıd dönemlerinde yaşamış meşhur matematikçilerdendir. Sinan Paşa’nın ve Ali Kuşçu’nun talebesi olmuş, Ali Kuşçu’dan öğrendiği matematik bilgilerini Sinan Paşa’ya aktarmıştır. Böylece Sinan Paşa, onun vasıtasıyla matematik öğrenmiştir. Sinan Paşa’nın tavsiyesiyle, Fatih, Molla Lütfi’yi, özel kütüphanesinin müdürlüğüne getirmiştir. Molla Lütfi, bu sayede pek çok değerli kitaptan değişik bilimleri öğrenme fırsatına sahip olmuştur. Sinan Paşa, Fatih tarafından Sivrihisar’a sürülünce, Molla Lütfi de hocası ile birlikte gitmiş, Sultan II. Beyazıd’ın tahta çıkmasının ardından hocasıyla birlikte İstanbul’a dönmüştür. Önce Bursa’daki Yıldırım Beyazıd Medresesi’nde, sonra Filibe’de ve Edirne’de medrese hocalığı yapmıştır.
Molla Lütfi, çevresindeki devlet erkanına ve bilginlere latife yaparak onları eleştirdiğinden, çoğu kimse tarafından sevilmezdi. Fatih Sultan Mehmet’le bile iki arkadaş gibi şakalaşırdı. Kendisini çekemeyen bazı kimselerin, dinsizlik suçlamaları nedeniyle kovuşturmaya uğradı ve Sultan Beyazıd döneminde idam edildi. Ölümü üzerine pek çok kimse yas tutmuş, tarihler düşmüş ve şehit sayılmıştı. Molla Lütfi’nin, çoğu Arapça olan eserleri 17. yüzyıla kadar elden düşmemiştir. Taz’ifü’l-Mezbah (Sunak Taşının İki Katının Bulunması Hakkında) adlı kitabı iki bölümden oluşur. Birinci bölümde kare ve küp tarifleri, çizgilerin ve yüzeylerin çarpımı ve iki kat yapılması gibi geometri konuları ele alınmıştır. İkinci bölümde ise meşhur Delos problemi incelenmiştir. Molla Lütfi’nin, bu problemi, İzmir’li Theon’un eserinden öğrendiği anlaşılmaktadır. İzmir’li Theon, İskenderiye kütüphanesinin müdürü Eratosthenes’e atıfla, Delos adasında büyük bir veba salgını çıkınca, ahalinin, Apollon rahibine müracaat ederek bu salgının geçmesi için ne yapmak gerektiğini sorduklarında, rahibin tapınaktaki sunak taşını iki katına çıkarmalarını tavsiye ettiğini, böylece kolaylıkla çözülemeyecek bir matematik problemi ortaya çıkmış olduğunu yazar. Mimarlar bu işi başaramıyınca, Platon’un yardımını isterler. Platon, rahibin sunak taşına ihtiyacı olduğundan değil, Yunanlılara matematiği ihmal ettiklerini ve küçümsediklerini söyleme maksadında olduğunu bildirdikten sonra, problemlerin orta orantı ile çözüleceğini ifade etmiştir. Molla Lütfi, işte bu hikayeye dayanarak eserini yazmıştır. Kitabında, küpün iki kat yapılmasının, yanına başka bir küp ilave etmek demek olmayıp, onu sekiz defa büyütmek demek olduğunu açıklar. Molla Lütfi Mevzuatü’l Ulüm (Bilimlerin Konuları) adlı eserinde de yüz kadar bilimi tasnif etmiştir. |
MATRAKÇI NASUH |
Türk, minyatürcü. Ayrıca matematik ve tarih konularında kitaplar da yazmış çok yönlü bir bilgindir. Doğum tarihi ve yeri bilinmiyor. Kâtip Çelebi ölüm tarihi olarak 1533'ü vermekteyse de, bunun doğru olmadığı bugün kesinleşmiştir. Çeşitli kaynaklarda onun 1547'den, 1551'den, 1553'ten sonra ölmüş olabileceği ileri sürülmektedir. Yaşamı üstüne bilgi de yok denecek kadar azdır. Saraybosna yakınlarında doğduğuna, dedesinin devşirme olduğuna ilişkin kesinleşmemiş ipuçları vardır.
Enderun'da okumuştur. Matrakçı ya da Matrakî adıyla anılması, lobotu andıran sopalarla oynandığı ve eskrime benzeyen bir tür savaş oyunu olduğu bilinen "matrak" oyununda çok usta olmasından ve belki de bu oyunun mucidi bulunmasından ileri gelmektedir. Nasuh ayrıca çok usta bir silahşördü. Bu nedenle Silahî adıyla da anılırdı. Türlü silah ve mızrak oyunlarındaki ustalığı nedeniyle Osmanlı ülkesinde "üstad" ve "reis" olarak tanınması için 1530'da I. Süleyman (Kanuni) tarafından verilmiş bir beratı da vardı. Çeşitli silahların nasıl kullanılacağını ve dövüş yöntemlerini anlatan Tuhfetü'l-Guzât adlı bir kılavuz kitap bile yazmıştı. Nasuh, özellikle geometri ve matematik alanlarında önemli bir bilim adamıydı. Uzunluk ölçülerini gösteren cetveller hazırlamış ve bu konuda kendinden sonra gelenlere önderlik etmiştir. Matematiğe ilişkin iki kitabı Cemâlü'l-Küttâb ve Kemalü'l- Hisâb ile Umdetü'l-Hisâb'ı I. Selim (Yavuz) döneminde yazmış ve padişaha adamıştır. Bu yapıtlardan sonuncusu uzun yıllar matematikçilerin elkitabı olarak kullanılmıştır. |
ÖMER HAYYAM |
Yazdığı bilimsel içerikli kitaplar arasında Cebir ve Geometri Üzerine, Fiziksel Bilimler Alanın-da Bir Özet, Varlıkla İlgili Bilgi Özeti, Oluş ve Görüşler, Bilgelikler Ölçüsü, Akıllar Bahçesi yer alır. Enbüyük eseri Cebir Risalesi'dir. On bölümden oluşan bu kitabın dört bölümünde kübik denklemleri incelemiş ve bu denklemleri sınıflandırmıştır. Matematik tarihinde ilk kez bu sı-nıflandırmayı yapan kişidir. O cebiri, sayısal ve geometrik bilinmeyenlerin belirlenmesini a-maçlayan bilim olarak tanımlardı. Matematik bilgisi ve yeteneği zamanın çok ötesinde olan Ömer Hayyam denklemlerle ilgili başarılı çalışmalar yapmıştır. Nitekim, Hayyam 13 farklı 3. dereceden denklem tanımlamıştır. Denklemleri çoğunlukla geometrik metod kullanarak çözmüştür ve bu çözümler zekice seçilmiş konikler üzerine dayandırılmıştır. Bu kitabında iki koniğin arakesitini kullanarak 3. dereceden her denklem tipi için köklerin bir geometrik çizi-mi bulunduğunu belirtir ve bu köklerin varlık koşullarını tartışır. Bunun yanısıra Hayyam, binom açılımını da bulmuştur. Binom teoerimini ve bu açılımdaki katsayıları bulan ilk kişi olduğu düşünülmektedir. (Pascal üçgeni diye bildiğimiz şey aslında bir Hayyam üçgenidir).Öğrenimi tamamlayan Ömer Hayyam kendisine bugünlere kadar uzana-cak bir ün kazandıran Cebir Risaliyesi'ni ve Rubaiyat'ı Semerkant'ta kaleme almıştır. Dönemin üç ünlü ismi Nizamülmülk, Hasan Sabbah ve Ömer Hayyam bu şehirde bir araya gelmiştir. Dönemin hakanı Melikşah, adı devlet düzeni anlamına gelen ve bu ada yakışır yaşayan veziri Nizamül-mülk'e çok güvenirdi. Ömer Hayyam ile ilk kez Semerkant'ta tanışan Nizam onu İsfa-han'a davet eder. Orada buluştuklarında O'na devlet hülyasından bahseder ve bu büyük ha-yalinin gerçekleşmesi için Hayyam'dan yardım ister. Fakat Hayyam devlet işlerine karışmak istemez ve teklifini geri çevirir.4 Aralık 1131'de doğduğu yer olan Nişabur' da fani dünyaya veda eder.. |
Pierre De Fermat |
|
PİSAGOR |
Yunanlı matematikçi (M.Ö. 570'e doğru - M.Ö. 480'e doğru). Proklos, a2 + b2 = c2 eşitliğini sağlayarak Pythagorascı üçlüler (a,b,c) oluşturmak olanağı veren formülü Pythagoras'a mal etti. Pythagorasçılar ayrıca a - b = b - c gibi aritmetik, a : b = b :c gibi geometrik, (a - b) : a= (b - c) : c gibi armonik ortalamaları inceleyip, tamsayılarla sınırlı bir oranlar kuramını da geliştirdiler. Bir karenin köşegen ve kenarının eş ölçeksizliğinin, yani uzunluklarının ortak bir ölçünün tam katlarıyla ifade edilememesinin keşfi, genellikle onlara atfedilir. Bunun, Pythagoras'tan esinlendiği söylenir. Oysa bu keşif, herşey sayıdır önerisinde ileri sürüldüğü gibi, dünyanın tamsayılara uygunluğu düşüncesine son verdiği için derin bir bunalıma yol açtı. Gerçekten de Pythagorascı doğa görüşü her şeye bir tam sayı atfediyor-du. Bu görüş, aynı sayıları düzenleyerek çeşitli büyüklüklerle, çeşitli ortamlarda aynı müzik armonilerini ve aynı geometrik biçimler ortaya konulabileceği gözlemine dayanıyordu. Örne-ğin, kenarları 3:4:5 ile orantılı her üç-gen, dik üçgendi (Pythagoras teoremi). Ayrıca Pythagoras'ın daha önce Babylonialılar'ın bildikleri bu teoremin bir tanıtlamasını yapıp yapmadığı da bilinmemektedir |
SALİH ZEKİ (1864 - 1921) |
Salih Zeki Bey DŞ’1882 (D. 1864, İstanbul - Ö. 1921, İstanbul), Osmanlı-Türk Matematik bilgini. 1864 yılında İstanbul’da yoksul bir ailenin oğlu olarak dünyaya geldi. Babası Boyabatlı Hasan Ağa, annesi Saniye Hanımdır. Anne ve babasının ölümü üzerine ninesi tarafından on yaşındayken Darüşşafaka’ya verildi. 1882 yılında Darüşşafaka’yı birincilikle bitirdi. Aynı yıl Posta ve Telgraf Nezareti Telgraf Kalemi (Fen Şubesi)’ne memur olarak atandı. 1884 yılında Nezaretin Avrupa’da uzman telgraf mühendisi ve fizikçi yetiştirme kararı üzerine birkaç arkadaşıyla birlikte Paris’e gönderildi ve burada Politeknik Yüksekokulu’nda elektrik mühendisliği öğrenimi gördü. 1887 yılında İstanbul’a döndü ve eski dairesinde elektrik mühendisi ve müfettiş olarak çalıştı. Ek görev olarak Mekteb-i Mülkiye’de (bugün Ankara Üniversitesi’ne bağlı Siyasal Bilgiler Fakültesi) fizik ve kimya dersleri verdi (1889-1900). Bu arada Rasathane-i Amire müdürlüğünde ve II. Meşrutiyetin ilanından (1908) sonra Maarif Nezareti Meclis-i Maarif üyeliğinde bulundu. 1910’da Mekteb-i Sultani (bugün Galatasaray Lisesi) müdürlüğüne atandı. 1912’de Maarif Nezareti müsteşarı, 1913’te Darülfünün-ı Osmani (bugün İstanbul Üniversitesi) rektörü oldu. 1917’de rektörlükten ayrıldıysa da üniversitedeki görevini Fen Şubesi (Fakültesi) Müderrisi (Profesör) olarak sürdürdü. Ömrünün sonuna doğru aklî dengesini kaybetti ve tedavi altındayken 1921 yılında Şişli’deki Fransız Hastanesi’nde öldü. Fatih Camiinin bahçesine gömüldü. 3 kez evlenmiş olan Salih Zeki, bu evliliklerden birini Halide Edip’le (Adıvar) yapmış, ölümünden kısa bir süre önce ayrılmıştı. Salih Zeki, önde gelen son dönem Osmanlı matematik bilginlerindendi. İkdam, Darüşşafaka ve İktisadiyat gazeteleri ile Darülfünun dergisine sayısız katkıda bulundu. Dönemin ünlü bilginleriyle matematik ve fen bilimleri konusunda yazılı tartışmalara girdi ve bu konularda bir kısmı ders kitabı olmak üzere çok sayıda yapıt verdi. Yapıtları: Hendese (Geometri) [lise ders kitabı]; Hikmet-i Tabiiye (Fizik) [lise ders kitabı]; Mebhas-ı Savt (Fonetik); Mebhas-ı Elektrik-i Miknatisi ((Elektro Magnetizma); Mebhas-ı Hararet-i Harekiye (Termodinamik); Mebhas-ı Cazibeyi Umumiye (Genel Çekim); Mebhas-ı Elektrikiyet ve Şariyet (Elektrik ve Kılcallık); Hesab-ı İhtimali (İhtimaller Hesabı); Mebhas-ı Hareket-i Seyalat (Akışkanların Hareketi); Hendese-i Tahliliye (Analitik Geometri); Mebhas-ı Nazariye-i Temevvücat (Dalga Teorisi); Heyet-i Riyaziye (Matematik Astronomi); Kamus-u Riyaziyat (Matematik Ansiklopedisi); Asar-ı Bakiye (Ölmez Eserler). Son iki yapıtın tamamı, ayrıca Henri Poincare’den çevirdiği dört kitap basılmamıştır. |
SELMAN AKBULUT (1949) |
|
Prof. Dr. Selman Akbulut, 1971 yılında California Üniversitesi (Berkeley) Matematik Bölümü'nden mezun olmuştur. Prof. Dr. Akbulut, 1975 yılında aynı üniversitede doktora eğitimini tamamlayarak, 1976 yılında Wisconsin Üniversitesi'nde yardımcı doçent olarak göreve başlamıştır.
|
ULUĞ BEY (1393 - 1449) |
Türk matematikçilerinden birisi olan Uluğ Bey, Timur'un erkek torunlarından hükümdar olanlardan birinin oğludur. Asıl adı Mehmet'tir. Fakat o, daha çok Uluğ Bey adı ile ünlü olmuştur. 1393 yılında Sultaniye kentinde doğmuştur. Timur'un öldüğü sıralarda Uluğ Bey Semerkant'ta bulunuyordu. Semerkant ve Maveraünnehir, Mirza Halil Sultan'ın saldırısı ve işgali üzerine babasının yanına gitmek zorunda kalmıştır. Babası buraları yeniden yönetimine alarak on altı yaşında olan Uluğ Bey'e yönetimini bırakmıştır. Uluğ Bey, bu tarihten sonra, hem hükümeti yönetmiş ve hem de öğrenimine devam etmiştir. Uluğ Bey, bilgin ve olgun bir padişahtı. Boş zamanını kitap okumak ve bilginlerle ilmi konular üzerinde konuşmakla geçirirdi. Tüm bilginleri yöresinde toplamıştı. Uluğ Bey, dikkatlice okuduğu kitabı kelimesi kelimesine hatırında tutacak kadar belleği vardı. Matematik ve astronomi bilgileri oldukça ileri düzeydeydi. Bir söylentiye göre, kendi falına bakarak, oğlu Abdüllatif tarafından öldürüleceğini görmüş ve bunun üzerine oğlunu kendisinden uzak tutmayı uygun görmüştür. Baba ile oğlu arasındaki bu soğukluk, Uluğ Bey'in küçük oğluna karşı olan yakınlığı ile daha da şiddetlenmiş ve sonunda Uluğ Bey'in korktuğu başına gelmiştir. Uluğ Bey, Semerkant'ta bir medrese ve bir de rasathane yaptırmıştır. Kadı Zade bu medreseye başkanlık etmiştir. Rasathane için yörede bulunan tüm mühendis, alim ve ustaları Semerkant'a çağırmıştır. Kendisi için de bu rasathanede bir oda yaptırarak tüm duvar ve tavanları gök cisimlerinin manzaralarıyla ve resimleriyle süsletmişti. Rasathanenin yapım ve rasat aletleri için hiç bir harcamadan kaçınmamıştır. Bu gözlemevinde yapılan gözlemler, ancak on iki yılda bitirilebilmiştir. Gözlemevinin yönetimini Kadı Zade ile Cemşid'e vermiştir. Cemşid, gözlemlere başlandığı sırada ve Kadı Zade de gözlemler bitmeden ölmüştür. Gözlemevinin tüm işleri o zaman genç olan Ali Kuşçu'ya kalmıştır. Bu gözlem üzerine Uluğ Bey, ünlü Zeycini düzenlemiş ve bitirmiştir. Zeyç Kürkani veya Zeyç Cedit Sultani adı verilen bu eser, birkaç yüzyıl doğuda ve batıda faydalanılacak bir eser olmuştur. Zeyç Kürkani bazı kimseler tarafından açıklanmış ve Zeyç'in iki makalesi 1650 yılında Londra'da ilk olarak basılmıştır. Avrupa dillerinin birçoğuna, çevrilmiştir. 1839 yılında cetvelleri Fransızca tercümeleriyle birlikte, asıl eser de 1846 yılında aynen basılmıştır. Zeyç Kürkani'nin asıl kopyalarından biri Irak ve İran savaşlarından sonra Türkiye'ye getirilmiş ve halen Ayasofya kütüphanesindedir. Bir hile ile oğlu Abdüllatif tarafından 1449 yılında öldürülmüştür.
SSCB posta pulu (1987) Uluğ Begin rasathanesi (Semerkand) |